PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 Accreditation #85368

Sample Delta 8 Concentrate - Sunset Sherbet

Sample ID SD22082	3-019 (51367)	Matrix Concentrate (Inhalable Cannabis Good)
Tested for Anchore	d MFG	
Sampled -	Received Aug 23, 2022	Reported Aug 24, 2022

Analyses executed CAN20

Laboratory note: The estimated concentration of the unknown peak in the sample is 15.4% [Currently PharmLabs laboratory can not confirm an unidentified peak in upur chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or d9-THC. At this time there are no reference standards available for (+)d8-THC (+)d8-THC is a different compound from the main (-)d8-THC cannabinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is a different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is a different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is a different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is a different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is a different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is a different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is addifferent efficacies. Using the concentration of (+)d8-THC and d9-THC with the majority, if not all, of the concentration being (+)d8-THC. Total cannabinoids is estimated to be 90.9%.

CAN20 - Cannabinoids Analysis

Analyzed Aug 24, 2022 | Instrument HLPC

Measurement Uncertainty at 95% confidence 7.806%

Analyte	LOD mg/g	LOQ mg/g	Result %	Result mg/g
Cannabidivarin (CBDV)	0.039	0.16	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
exo-THC (exo-THC)	0.016	0.8	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ 8-tetrahydrocannabinol (Δ 8-THC)	0.004	0.16	75.50	755.04
(6aR,9S)- Δ 10-Tetrahydrocannabinol ((6aR,9S)- Δ 10)	0.015	0.16	ND	ND
Hexahydrocannabinol (S Isomer) (9s-HHC)	0.017	0.16	ND	ND
(6aR,9R)- Δ 10-Tetrahydrocannabinol ((6aR,9R)- Δ 10)	0.007	0.16	ND	ND
Hexahydrocannabinol (R Isomer) (9r-HHC)	0.016	0.16	ND	ND
Cannabichromene (CBC)	0.002	0.16	ND	ND
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Δ 9-Tetrahydrocannabihexol (Δ 9-THCH)			ND	ND
Δ 9-Tetrahydrocannabiphorol (Δ 9-THCP)	0.017	0.16	ND	ND
Δ 8-Tetrahydrocannabiphorol (Δ 8-THCP)	0.041	0.16	ND	ND
Δ 8-THC-O-acetate (Δ 8-THC-O)	0.076	0.16	ND	ND
Δ9-THC-O-acetate (Δ9-THC-O)	0.066	0.16	ND	ND
Δ 8-Tetrahydrocannabivarin (Δ 8-THCV)			ND	ND
Total THC (THCa * 0.877 + THC)			ND	ND
Total CBD (CBDa * 0.877 + CBD)			ND	ND
Total CBG (CBGa * 0.877 + CBG)			ND	ND
Total HHC (9r-HHC + 9s-HHC)			ND	ND
TOTAL CANNABINOIDS			75.50	755.00

Sample photography

UI Not Identified ND Not Detected N/A Not Applicable NT Not Reported LOD Limit of Detection LOQ Limit of Quantification <LOQ Detected >ULOL Above upper limit of linearity CFU/g Colony Forming Units per 1 gram TNTC Too Numerous to Count

Pharm//are CANNABIS LABORATORY LIMS & ELN

Scan the OR code to verify authenticity.

Authorized Signature

Brandon Starr

Brandon Starr, Lab Manager Wed, 24 Aug 2022 11:29:19 -0700

PharmLabs San Diego | 3421 Hancock St, Second Floor, San Diego, CA 92110 | 619.356.0898 | ISO/IEC 17025:2017 Certification L17-427-1

"This report shall not be reproduced except in full, without the written approval of the lab. This report is for informational purposes only and should not be used to diagnose, treat or prevent any disease. Results are only for samples and batches indicated. Results are reported on an "as received" basis, unless indicated otherwise. When a Pass/Fail status is reported, that status is intended to be in accordance with federal, state and local laws which are required for the customer to be in a compliance. The measurement of uncertainty is not included in the Pass/Fail evaluation unless explicitly required by federal, state or local laws and has been reported on the certificate of analysis. Measurement of uncertainty is available upon request.

Delta 8 Concentrate | Potency COA

The previous section of this Certificate of Analysis (COA) displays **potency test results** of the product, specifying the concentrations of the various cannabinoids present.

Knowing a product's potency before consuming it is important, of course, but it is also important to verify that your product is not adulterated with unwanted or dangerous ingredients. A simple potency test cannot determine whether adulterants are present in the product; however, a full panel test is much more thorough and tests the product for adulterants like heavy metals, pesticides, and residual solvents.

The following section displays **full panel test results** for the base distillate used in this product. The only ingredients in our concentrates are:

- 1.) Delta 8 distillate, and
- **2.)** a proprietary blend of ISO-, GMP-, and FSSC-certified terpenes,

so you can feel safe knowing that this product complies with industry safety standards.

Delta 8 Distillate | Full Panel COA

ACCS LABORATORY 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			Broad Spectrum Sample Matrix: CBD/HEMP Derivative Products (External Use)	
DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068	Certifica	ate of Analysis		
HAU PROCESSING 2200 E 76TH AVE DENVER, CO 80229-6631	Batch # 0500410 Batch Date: 2022-03-24 Extracted From: Hemp	Test Reg State: Colorado		
Order # HAU220324-080001 Order Date: 2022-03-24 Sample # AACQ210	Sampling Date: 2022-03-28 Lab Batch Date: 2022-03-28 Completion Date: 2022-03-31	Initial Gross Weight: 22.045 g		
Accesto Marco OSCOLHO PSCOLHO PSCOLARO	Potency Tested	Moisture Tested		

Tested (LCUV)

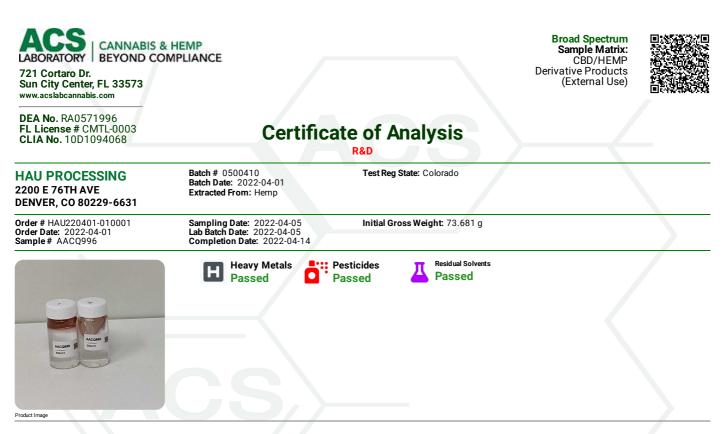
Delta 8/Delta 10 Potency 12

Product I mage

Specimen Weight: 56.720 mg	3				
Analyte	LOD (%)	LOQ (%)	Result (mg/g)	(%)	
Delta-8 THC	0.000026	0.001	902.320	90.232	
CBC	0.000018	0.001		<loq< td=""><td></td></loq<>	
CBD	0.000054	0.001		<loq< td=""><td></td></loq<>	
THCA-A	0.000032	0.001		<loq< td=""><td></td></loq<>	
Delta-9 THC	0.000013	0.001		<loq< td=""><td></td></loq<>	
Delta-10 THC	0.000003	0.001		<loq< td=""><td></td></loq<>	
CBN	0.000014	0.001		<loq< td=""><td></td></loq<>	
CBGA	0.00008	0.001		<loq< td=""><td></td></loq<>	
CBG	0.000248	0.001		<loq< td=""><td></td></loq<>	
CBDV	0.000065	0.001		<loq< td=""><td></td></loq<>	
CBDA	0.00001	0.001		<loq< td=""><td></td></loq<>	
THCV	0.000007	0.001		<loq< td=""><td></td></loq<>	

< Pote	ency Summary
Total Delta 8	Total Delta 10
90.232%	- None Detected
- Total THC	Total CBD
- None Detected	- None Detected
- Total CBG	Total CBN
- None Detected	- None Detected
Other Cannabinoids	Total Cannabinoids
- None Detected	90.232%

(77 an Lab Toxicologist Xueli Gao


Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, *CBT + Delta9 THCV + Total CBC + Total THC + Otal THC + Canabinoids on the summary section, *Total Detected Camabinoids = Delta8-THC + Total CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBC + Total CBC + CBT + Delta9-THCV + Total CBC + Total THC + Otal THC + Otal CBC + CBC + CBT + Delta9-THCV + Total CBC + Delta9-THC + Otal THC + Otal CBC + CBC + CBT + Delta9-THCV + Total CBC + Delta9-THC + Otal THC + Otal CBC + CBC + CBT + Delta9-THCV + Total CBC + Delta9-THC + Otal CBC + CBC

Sun Ci	CANNABIS & HE BEYOND COMP ortaro Dr. ty Center, FL 33573 Jabcanabis.com				Broad Spectrum Sample Matrix: CBD/HEMP Derivative Products (External Use)	
DEA No FL Lice	o. RA0571996 ense # CMTL-0003 lo. 10D1094068	Certif		of Analysis		
2200 E	PROCESSING 76TH AVE R, CO 80229-6631	Batch # 0500410 Batch Date: 2022-03-24 Extracted From: Hemp		Test Reg State: Colorado		
Order Da	HAU220324-080001 te: 2022-03-24 : AACQ210	Sampling Date: 2022-03-28 Lab Batch Date: 2022-03-28 Completion Date: 2022-03-31		Initial Gross Weight: 22.045 g		
Analyte Moisture	Moisture Specimen Weight: N/A Dilution Factor	m: 1.000 (Moist	Tested ture Meter) Result (%) 1.300			
Xueli Gao Ph.D., DABT	Lab Toxicologist	9 THC, *Total THCV = THCV + (THCVA *Total THC-0-Acetate = Delta 8 THC-0	his report: *To A * 0.87) , *CB(D-Acetate + Del	- tal CBD = CBD + (CBD-A * 0.877), *Total CBDV = C 3 Total = (CBGA * 0.877) + CBG, *CBN Total = (CB ta 9 THC-O-Acetate, *Other Cannabinoids Total =	NA * 0.877) + CBN, *Total CBC = CBC + Total Cannabinoids - All the listed canna	+ (CBCA * 0.877), abinoids on the
		summary section, *Total Detected Cam + Total CBDV + Delta10-THC + Total TH (mg/ml) = Milligrams per Milliliter, LOC Colony Forming Unit per Gram (cfu/g) (µg/g), (aw) = aw (area ratio) = Area R This report shall not be reproduced analyzed. Test results are confider	nabinoids = De IC-O-Acetate, 2 = Limit of Qu = Colony Form atio, (mg/Kg) I, without write ntial unless e	Ita8-THC + Total CBN + CBT + Delta8-THCV + Tota Analyte Details above show the Dry Weight Conce antitation, LOD = Limit of Detection, Dilution = Dilution ing Unit per Gram, , LOD = Limit of Detection, (µg, = Milligram per Kilogram, *Measurement of Uncer ten approval, from ACS Laboratory. The result xplicitly waived otherwise. Accredited by a thi rmational Organization for Standardization.	I CBG + Total CBD + Total THCV + CBL + ntrations unless specified as 12° mois ution Factor (ppb) = Parts per Billion, (' g) = Microgram per Gram (ppm) = Part tainty = +/ - 10^{\circ} s of this report relate only to the ma	• Total THC + Total CBC ture concentration. %) = Percent, (cfu/g) = ts per Million, (ppm) = aterial or product

Potency Panel Not Included

H	Heavy I	Metals -	со			ssed (P-MS)	Д	Residua	al Solver	nts - CO			<mark>ssed</mark> _{GCMS)}
	Specimen W	eight: 248.510	mg		(10); -ivi3)	5	Specimen W	eight: 10.200 n	ng		(GCIWI3)
Dilution Factor	r: 201.199						Dilution Factor:	1.000					
Analyte	LOQ (ppb)	Action Limit (ppb)	Result (ppb) Analyte	LO Q (ppb)	Action Limit (ppb)	Result (ppb)	Analyte	LOQ (ppm)	Action Limit (ppm)	Result (ppm) Analyte	LOQ (ppm)	Action Limit (ppm)	Result (ppm)
Arsenic (As)	100	1500	<loq (pb)<="" lead="" td=""><td>100</td><td>500</td><td><loq< td=""><td>Acetone</td><td>2.08</td><td>1000</td><td><loq alcohol<="" isopropyl="" td=""><td>1.39</td><td>1000</td><td><loq< td=""></loq<></td></loq></td></loq<></td></loq>	100	500	<loq< td=""><td>Acetone</td><td>2.08</td><td>1000</td><td><loq alcohol<="" isopropyl="" td=""><td>1.39</td><td>1000</td><td><loq< td=""></loq<></td></loq></td></loq<>	Acetone	2.08	1000	<loq alcohol<="" isopropyl="" td=""><td>1.39</td><td>1000</td><td><loq< td=""></loq<></td></loq>	1.39	1000	<loq< td=""></loq<>
Cadmium (Cd) 100	500	<loq (hg)<="" mercury="" td=""><td>100</td><td>1500</td><td><loq< td=""><td>Benzene</td><td>0.02</td><td>2</td><td><loq methanol<="" td=""><td>0.69</td><td>600</td><td><loq< td=""></loq<></td></loq></td></loq<></td></loq>	100	1500	<loq< td=""><td>Benzene</td><td>0.02</td><td>2</td><td><loq methanol<="" td=""><td>0.69</td><td>600</td><td><loq< td=""></loq<></td></loq></td></loq<>	Benzene	0.02	2	<loq methanol<="" td=""><td>0.69</td><td>600</td><td><loq< td=""></loq<></td></loq>	0.69	600	<loq< td=""></loq<>
							Butanes	2.5	1000	<loq pentane<="" td=""><td>2.08</td><td>1000</td><td><loq< td=""></loq<></td></loq>	2.08	1000	<loq< td=""></loq<>
							Ethanol	2.78	1000	<loq propane<="" td=""><td>5.83</td><td>1000</td><td><loq< td=""></loq<></td></loq>	5.83	1000	<loq< td=""></loq<>
							Ethyl Acetate	1.11	1000	<loq td="" toluene<=""><td>2.92</td><td>180</td><td><loq< td=""></loq<></td></loq>	2.92	180	<loq< td=""></loq<>
							Heptane	1.39	1000	<loq td="" total="" xylenes<=""><td>2.92</td><td>430</td><td><loq< td=""></loq<></td></loq>	2.92	430	<loq< td=""></loq<>
							Hexane	1.17	60	<loq< td=""><td></td><td></td><td></td></loq<>			

(77 an Lab Toxicologist Xueli Gao

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Xueli Gao Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Total THC-0-Acetate = Delta 8 THC-0-Acetate + Delta 9 THC-0-Acetate, *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta6a10a-THC + Total CBN + CBT + Delta8 THCV + Total CBC + CBL + CBL + Total CBC + Total CBC + Total CBD + total THCV + CBL + Total THC + Total CBC + Total CBDV + Delta10-THC + Total THC-0-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfurg) = Colony Forming Unit per Gram (cfurg) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Milcrogram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

ACCS LABORATORY CANNABIS & BEYOND CO 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			Broad Spectrum Sample Matrix: CBD/HEMP Derivative Products (External Use)	
DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068	Certifica	ate of Analysis		
HAU PROCESSING 2200 E 76TH AVE DENVER, CO 80229-6631	Batch # 0500410 Batch Date: 2022-04-01 Extracted From: Hemp	Test Reg State: Colorado		
Order # HAU220401-010001 Order Date: 2022-04-01 Sample # AACQ996	Sampling Date: 2022-04-05 Lab Batch Date: 2022-04-05 Completion Date: 2022-04-14	Initial Gross Weight: 73.681 g		
Pesticides - CO				Passed

Pesticides - CO

ACC

Specimen Weight: 270.500 mg

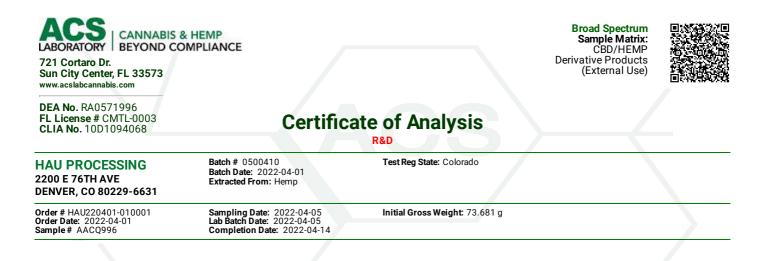
Dilution Factor: 5.545									
Analyte	LOQ (ppb)	Action Limit (ppb)	Result (ppb) Analyte	LOQ (ppb)	Action Limit (ppb)	Result (ppb) Analyte	LOQ (ppb)	Action Limit (ppb)	
Abamectin	250	250	<loq dodemorph<="" td=""><td>50</td><td>*</td><td><loq naled<="" td=""><td>100</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	50	*	<loq naled<="" td=""><td>100</td><td>*</td><td><l0< td=""></l0<></td></loq>	100	*	<l0< td=""></l0<>
Acephate	50	50	<loq endosulfan="" sulfate<="" td=""><td>2500</td><td>2500</td><td><loq novaluron<="" td=""><td>25</td><td>25</td><td><l0< td=""></l0<></td></loq></td></loq>	2500	2500	<loq novaluron<="" td=""><td>25</td><td>25</td><td><l0< td=""></l0<></td></loq>	25	25	<l0< td=""></l0<>
Acequinocyl	30	*	<loq endosulfan-alpha<="" td=""><td>2500</td><td>2500</td><td><loq oxamyl<="" td=""><td>1500</td><td>1500</td><td><l0< td=""></l0<></td></loq></td></loq>	2500	2500	<loq oxamyl<="" td=""><td>1500</td><td>1500</td><td><l0< td=""></l0<></td></loq>	1500	1500	<l0< td=""></l0<>
Acetamiprid	50	50	<loq endosulfan-beta<="" td=""><td>2500</td><td>2500</td><td><loq paclobutrazol<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	2500	2500	<loq paclobutrazol<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Aldicarb	500	500	<loq ethoprophos<="" td=""><td>10</td><td>10</td><td><loq pentachloronitrobenzen(quintozene)<="" td=""><td>20</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq pentachloronitrobenzen(quintozene)<="" td=""><td>20</td><td>*</td><td><l0< td=""></l0<></td></loq>	20	*	<l0< td=""></l0<>
Allethrin	100	100	<loq etofenprox<="" td=""><td>50</td><td>*</td><td><loq permethrin<="" td=""><td>500</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	50	*	<loq permethrin<="" td=""><td>500</td><td>*</td><td><l0< td=""></l0<></td></loq>	500	*	<l0< td=""></l0<>
Atrazine	25	*	<loq etoxazole<="" td=""><td>20</td><td>*</td><td><loq phenothrin<="" td=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	20	*	<loq phenothrin<="" td=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq>	50	*	<l0< td=""></l0<>
Azadirachtin	500	500	<loq etridiazole<="" td=""><td>150</td><td>150</td><td><loq phosmet<="" td=""><td>20</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	150	150	<loq phosmet<="" td=""><td>20</td><td>*</td><td><l0< td=""></l0<></td></loq>	20	*	<l0< td=""></l0<>
Azoxystrobin	10	10	<loq fenhexamid<="" td=""><td>125</td><td>*</td><td><loq piperonylbutoxide<="" td=""><td>1250</td><td>1250</td><td><l0< td=""></l0<></td></loq></td></loq>	125	*	<loq piperonylbutoxide<="" td=""><td>1250</td><td>1250</td><td><l0< td=""></l0<></td></loq>	1250	1250	<l0< td=""></l0<>
Benzovindiflupyr	10	10	<loq fenoxycarb<="" td=""><td>10</td><td>10</td><td><loq pirimicarb<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq pirimicarb<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Bifenazate	10	10	<loq fenpyroximate<="" td=""><td>20</td><td>*</td><td><loq prallethrin<="" td=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	20	*	<loq prallethrin<="" td=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq>	50	*	<l0< td=""></l0<>
Bifenthrin	1000	*	<loq fensulfothion<="" td=""><td>10</td><td>10</td><td><loq propiconazole<="" td=""><td>10</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq propiconazole<="" td=""><td>10</td><td>*</td><td><l0< td=""></l0<></td></loq>	10	*	<l0< td=""></l0<>
Boscalid	10	10	<loq fenthion<="" td=""><td>10</td><td>10</td><td><loq propoxur<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq propoxur<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Buprofezin	20	*	<loq fenvalerate<="" td=""><td>100</td><td>*</td><td><loq pyraclostrobin<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	100	*	<loq pyraclostrobin<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Carbaryl	25	25	<loq fipronil<="" td=""><td>10</td><td>10</td><td><loq pyrethrins<="" td=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq pyrethrins<="" td=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq>	50	*	<l0< td=""></l0<>
Carbofuran	10	10	<loq flonicamid<="" td=""><td>25</td><td>25</td><td><loq pyridaben<="" td=""><td>20</td><td>20</td><td><l0< td=""></l0<></td></loq></td></loq>	25	25	<loq pyridaben<="" td=""><td>20</td><td>20</td><td><l0< td=""></l0<></td></loq>	20	20	<l0< td=""></l0<>
Chlorantraniliprole	20	*	<loq fludioxonil<="" td=""><td>10</td><td>10</td><td><loq pyriproxyfen<="" td=""><td>10</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq pyriproxyfen<="" td=""><td>10</td><td>*</td><td><l0< td=""></l0<></td></loq>	10	*	<l0< td=""></l0<>
Chlorfenapyr	1500	1500	<loq fluopyram<="" td=""><td>10</td><td>10</td><td><loq resmethrin<="" td=""><td>50</td><td>50</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq resmethrin<="" td=""><td>50</td><td>50</td><td><l0< td=""></l0<></td></loq>	50	50	<l0< td=""></l0<>
Chlorpyrifos	500	500	<loq hexythiazox<="" td=""><td>10</td><td>*</td><td><loq spinetoram<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	*	<loq spinetoram<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Clofentezine	10	10	<loq imazalil<="" td=""><td>10</td><td>10</td><td><loq spinosad<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq spinosad<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Clothianidin	25	25	<loq imidacloprid<="" td=""><td>10</td><td>10</td><td><loq spirodiclofen<="" td=""><td>250</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq spirodiclofen<="" td=""><td>250</td><td>*</td><td><l0< td=""></l0<></td></loq>	250	*	<l0< td=""></l0<>
Coumaphos	10	10	<loq iprodione<="" td=""><td>500</td><td>500</td><td><loq spiromesifen<="" td=""><td>3000</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	500	500	<loq spiromesifen<="" td=""><td>3000</td><td>*</td><td><l0< td=""></l0<></td></loq>	3000	*	<l0< td=""></l0<>
Cyantraniliprole	10	10	<loq kinoprene<="" td=""><td>500</td><td>1250</td><td><loq spirotetramat<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	500	1250	<loq spirotetramat<="" td=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Cyfluthrin	200	*	<loq kresoxim="" methyl<="" td=""><td>150</td><td>150</td><td><loq spiroxamine<="" td=""><td>100</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	150	150	<loq spiroxamine<="" td=""><td>100</td><td>*</td><td><l0< td=""></l0<></td></loq>	100	*	<l0< td=""></l0<>
Cypermethrin	300	*	<loq cyhalothrin<="" lambda="" td=""><td>250</td><td>*</td><td><loq td="" tebuconazole<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	250	*	<loq td="" tebuconazole<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Cyprodinil	10	10	<loq malathion<="" td=""><td>10</td><td>10</td><td><loq td="" tebufenozide<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq td="" tebufenozide<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Daminozide	100	*	<loq metalaxyl<="" td=""><td>10</td><td>10</td><td><loq td="" teflubenzuron<=""><td>25</td><td>25</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq td="" teflubenzuron<=""><td>25</td><td>25</td><td><l0< td=""></l0<></td></loq>	25	25	<l0< td=""></l0<>
Deltamethrin	500	*	<loq methiocarb<="" td=""><td>10</td><td>10</td><td><loq td="" tetrachlorvinphos<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq td="" tetrachlorvinphos<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Diazinon	20	*	<loq methomyl<="" td=""><td>25</td><td>25</td><td><loq td="" tetramethrin<=""><td>100</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	25	25	<loq td="" tetramethrin<=""><td>100</td><td>*</td><td><l0< td=""></l0<></td></loq>	100	*	<l0< td=""></l0<>
Dichlorvos	50	50	<loq methoprene<="" td=""><td>2000</td><td>*</td><td><loq azole<="" td="" thiabend=""><td>20</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	2000	*	<loq azole<="" td="" thiabend=""><td>20</td><td>*</td><td><l0< td=""></l0<></td></loq>	20	*	<l0< td=""></l0<>
Dimethoate	10	10	<loq methyl-parathion<="" td=""><td>50</td><td>*</td><td><loq td="" thiacloprid<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	50	*	<loq td="" thiacloprid<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Dimethomorph	50	*	<loq mevinphos<="" td=""><td>25</td><td>25</td><td><loq td="" thiamethoxam<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	25	25	<loq td="" thiamethoxam<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>
Dinotefuran	50	50	<loq mgk-264<="" td=""><td>50</td><td>*</td><td><loq td="" thiophanate-methyl<=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq></td></loq>	50	*	<loq td="" thiophanate-methyl<=""><td>50</td><td>*</td><td><l0< td=""></l0<></td></loq>	50	*	<l0< td=""></l0<>
Diuron	125	*	<loq myclobutanil<="" td=""><td>10</td><td>10</td><td><loq td="" trifloxystrobin<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq></td></loq>	10	10	<loq td="" trifloxystrobin<=""><td>10</td><td>10</td><td><l0< td=""></l0<></td></loq>	10	10	<l0< td=""></l0<>

Gun drit Xueli Gao

Ph.D., DABT

Lab Toxicologist

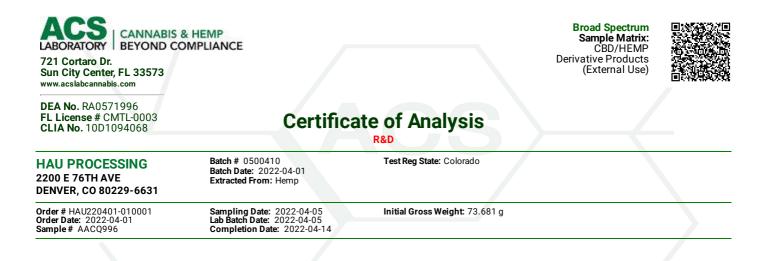
` <u>-</u> Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)


liza

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBD = CBD + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CDN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Total THC-0-Acetate = Delta 8 THC-0-Acetate + Delta 9 THC-0-Acetate, *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta6a10a-THC + Total CBN + CBT + Delta61 - THCV + Total CBN + CBT + Delta61 CBD + Total CBD + CBL + CBL + Total THC + Total CBC + Total CBDV + Delta10-THC + Total THC + Delta6 - THC + Total CBN + CBT + Delta61 - THCV + CBL + Total THC + Total CBC + Total CBDV + Delta10-THC + Total THC-0-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Actor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram , LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Passed (LCMS/GCMS)


Gr dril e Xueli Gao

Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THC = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Total THC-0-Acetate = Delta 8 THC-0-Acetate + Delta 9 THC. •Acetate, *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta6a10a-THC + Total CH + CBT + Delta8 THCV + Total CBC + CBC + (CBCA * 0.877), *Total THC + Total CBC + To

Gr dril e Xueli Gao

Ph.D., DABT

 \leq

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THC = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Total THC-0-Acetate = Delta 8 THC-0-Acetate + Delta 9 THC. •Acetate, *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta6a10a-THC + Total CH + CBT + Delta8 THCV + Total CBC + CBC + (CBCA * 0.877), *Total THC + Total CBC + To